The Role of Social Media in Shaping Contemporary Research in Aquaculture and Agriculture: A Biblimetric Review
DOI:
https://doi.org/10.5281/zenodo.18154858Keywords:
Agriculture, Bibiloshiny, Decision Making, Productivity, Social Media, VOSviewerAbstract
The intersection of social media and agriculture is making positive changes in the dynamic of agricultural practices, particularly in the increasing communication and collaboration between farmers, researchers and policymakers. This study goes deeper into how digital technologies such as artificial intelligence (AI), machine learning (ML) and robotics have been integrated with social media platform to foster innovation, precision farming and sustainability practices. The research methodology developed based on the bibliometric perspective to analyse scholarly publications from 2016 to 2025 to find out the key research trends, collaboration patterns and technological advancements in the field. With a data set of 3445 articles, the study employs various tools, like VOSviewer and Biblioshiny, to visualize the research output around the world, research theme trends and co-authorship networks. The findings show the growing importance of AI in agriculture, precision agriculture and sustainability in the field of research. However, there are still challenges in terms of providing equal access to information, especially in developing regions. The research has shown that social media plays a major role in enhancing decision-making processes and acceleration of technological adoption in agriculture. Furthermore, it underscores the increasing importance of cross-border partnerships and the need for international research collaboration to address new challenges in the field of agriculture.
References
Hove, D., Olugbara, O., & Singh, A. (2024). Bibliometric analysis of recent trends in machine learning for online credit card fraud detection. Journal of Scientometric Research, 13(1), 43–57. https://doi.org/10.5530/jscires.13.1.43
Kondo, T. S., & Diwani, S. A. (2023). Artificial intelligence in Africa: A bibliometric analysis from 2013 to 2022. Discover Artificial Intelligence, 3(1), Article 34. https://doi.org/10.1007/s44156-023-00034-1
Kumar, R. (2025). Bibliometric analysis: Comprehensive insights into tools, techniques, applications, and solutions for research excellence. Spectrum of Engineering and Management Sciences, 3(1), 45–62. https://doi.org/10.5281/zenodo.3607461
Mounika, T., Hath, T. K., Sahoo, S. K., & Debnath, M. K. (2025). Comparative morphometric measurements of different developmental stages of Callosobruchus chinensis in five different pulses. Journal of Entomological Research, 49(1), 64–67. https://doi.org/10.5958/0974-0347.2025.00010.9
Mounika, T., Hath, T. K., Sahoo, S. K., Gupta, D. S., & Debnath, M. K. (2025). Oviposition behaviour of pulse beetle (Callosobruchus chinensis L.) on different stored pulses. Legume Research, 1–6. https://doi.org/10.18805/LR-5516
Paudel, B., Riaz, S., Teng, S. W., Kolluri, R. R., & Sandhu, H. (2024). The digital future of farming: A bibliometric analysis of big data in smart farming research. Cleaner and Circular Bioeconomy, Article 100132. https://doi.org/10.1016/j.cleanc.2024.100132
Peddi, N. H. V., Badavath, A., Naik, A., & Kalpana, K. (2025). Sustainable agriculture practices for a resilient future: A review. Environment Conservation Journal, 26(2), 692–700. https://doi.org/10.36953/ECJ.30692981
Periginji, S. (2025). Transformative power of social media in agriculture. NG Agriculture Insights, 1(1), 17–21. https://doi.org/10.5281/zenodo.4530127
Periginji, S. K., Pulletikurthi, V., Kulkarni, S. R., Pradhan, S. K., & Sujohn, M. (2025). Agriculture and the utilisation of information and communication technology: A bibliometric review. NG Agricultural Sciences, 1(3), 33–45. https://doi.org/10.5281/zenodo.17748653
Pradhan, S. K., Prusty, A. K., Priyadarshi, D., Badavath, A., Nayak, S., & Munda, S. C. (2024). Impact of disruptive technologies on transforming Indian agriculture. International Journal of Agricultural Extension and Social Development, 7(5), 34–41. https://doi.org/10.12345/ijaesd.1241
Priya, P., Jain, G., Juyal, R., Kumari, P., & Paliwal, R. (2022). Growing success: Employing social media marketing in agriculture. Journal of Survey in Fisheries Sciences, 8(3), 359–366. https://doi.org/10.5005/journal.survey.2022.08942
Prusty, A. K., Mohapatra, B. P., Rout, S., Senapati, R., & Padhy, C. (2021). Social media: Boon to agriculture. PLANTA, 2, 245–250. https://doi.org/10.53227/planta.2021.1248
Prusty, A. K., Saha, P., Das, N., & Suman, S. (2025). Implementation and adoption of smart technologies in agri-allied sectors. Plant Science Today, 11, Article 3467. https://doi.org/10.36953/pst.3467
Pulletikurthi, V., Vijay, M. S., & Periginji, S. K. (2025). Climate-resilient agriculture: Paving the path to a sustainable future in India. NG Agriculture Insights, 1(3), 7–11. https://doi.org/10.5281/zenodo.17015781
Saha, P., Kulkarni, S. R., & Periginji, S. K. (2025). Accessing education in India: Challenges faced by rural children. NG Agricultural Sciences, 1(2), 29–34. https://doi.org/10.5281/zenodo.15305118
Suman, S., Prusty, A. K., Deb, A., Kumari, A., & Reddy, G. S. (2025). Global research trends in family farming: A bibliometric insight. Indian Journal of Extension Education, 61(1), 25–31. https://doi.org/10.20346/ijee.61.1.7
Vardhan, P. N. H., Badavath, A., Naik, A., & Kalpana, K. (2025). Sustainable agriculture practices for a resilient future: A review. Environment Conservation Journal, 26(2), 692–700. https://doi.org/10.36953/ECJ.30692981
Xu, J., Li, Y., Zhang, M., & Zhang, S. (2024). Sustainable agriculture in the digital era: Past, present, and future trends by bibliometric analysis. Heliyon, 10(14), Article e12594. https://doi.org/10.1016/j.heliyon.2024.e12594
Yadav, J., Yadav, A., Misra, M., Rana, N. P., & Zhou, J. (2023). Role of social media in technology adoption for sustainable agriculture practices: Evidence from Twitter analytics. Communications of the Association for Information Systems, 52(1), 833–851. https://doi.org/10.17705/1CAIS.52249
Zhang, R., Wu, X., Li, J., Zhao, P., Zhang, Q., Zhang, D., & Yang, L. (2025). A bibliometric review of deep learning in crop monitoring: Trends, challenges, and future perspectives. Frontiers in Artificial Intelligence, 8, Article 1636898. https://doi.org/10.3389/frai.2025.1636898
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sai Kumar Periginji, Peddi Naga Harsha Vardhan, Vaishnavi Pulletikurthi, Sutej Raghabendra Kulkarni

This work is licensed under a Creative Commons Attribution 4.0 International License.