Mini Review of Soil Carbon Sequestration (SCS): Mechanisms, Influencing Factors, Benefits
DOI:
https://doi.org/10.5281/zenodo.16892023Keywords:
Soil Carbon sequestration, Carbon dioxide, Soil fertility, Soil pH, Cover croppingAbstract
Soil carbon sequestration (SCS) is a key mechanism for climate change mitigation through reducing carbon dioxide emissions to the atmosphere and enhancing soil fertility. This mini review explains the physical, chemical and biological processes that influence SCS and how they contribute to soil organic carbon stabilization. The key influencing factors consist of soil texture and structure, soil pH, land use and management practices such as cover cropping, conservation tillage and agroforestry. Climatic factors such as temperature and moisture, as well as microbial communities play a part in facilitating greater carbon storage in the soil. This SCS provides several advantages such as enhancing soil nutrients and physical properties, augmenting food production, increasing diversity and resilience of soil organisms and potentially provide an economic opportunity for farmers (with a carbon credit market) while alleviating global warming. In this review, we summarize the major drivers influencing SCS and the prospects for adopting sustainable practices to optimize SOC, along with its associated benefits for both ecology and agriculture.
References
Allison, S., Wallenstein, M. & Bradford, M. Soil-carbon response to warming dependent on microbial physiology. Nature Geosci 3, 336–340 (2010). https://doi.org/10.1038/ngeo846
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., Minasny, B., Pan, G., Paustian, K., Rumpel, C., Sanderman, J., van Groenigen, J. W., Mooney, S., van Wesemael, B., Wander, M., & Chabbi, A. (2020). Towards a global-scale soil climate mitigation strategy. Nature communications, 11(1), 5427. https://doi.org/10.1038/s41467-020-18887-7
Conant, R. T., Ryan, M. G., Ågren, G. I., et al. (2011). Temperature and soil organic matter decomposition rates: Synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x
Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global change biology, 19(4), 988–995. https://doi.org/10.1111/gcb.12113
Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B. L., Fang, S., Zhou, G., Allison, S. D., Blair, J. M., Bridgham, S. D., Burton, A. J., Carrillo, Y., Reich, P. B., Clark, J. S., Classen, A. T., Dijkstra, F. A., Elberling, B., Emmett, B. A., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104–108. https://doi.org/10.1038/nature20150
Davidson, E., Janssens, I. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173. https://doi.org/10.1038/nature04514
FAO. (2020). Soil carbon sequestration for climate action and food security. Food and Agriculture Organization of the United Nations.
Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME journal, 6(5), 1007–1017. https://doi.org/10.1038/ismej.2011.159
Giller, K. E., Hijbeek, R., Andersson, J. A., & Sumberg, J. (2021). Regenerative Agriculture: An agronomic perspective. Outlook on agriculture, 50(1), 13–25.
https://doi.org/10.1177/0030727021998063
Green Element group (2020). How Soil Carbon Sequestration can be applied to the agricultural industry (Accessed March 17, 2025). https://www.greenelement.co.uk/blog/soil-carbon-sequestration/
Gudla, S. L., Puligadda, L. S., & Moharana, S. K. (2024). Assessing micronutrient levels and their correlation with soil physico-chemical properties in dryland farming, Anantapur District, Andhra Pradesh. 10.5281/zenodo.12648803
Gudla, S. L., Varikuppala, M., & Devarakonda, N. (2024). Evaluating the influence Of varied synthetic fertilizer concentrations in conjunction with vermicompost and FYM on the growth, yield, and economic aspects of black gram (Vigna mungo) cultivation in the Dehradun region of Uttarakhand. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 26(1), 85–92. 10.53550/AJMBES.2023.v25i04.034
Gudla, S. L., Puligadda, L. S., Devarakonda, N., & Ray, S. (2023). Assessing soil fertility dynamics and carbon sequestration potential in groundnut (Arachis hypogaea L.) cultivation areas of Sri Satya Sai District, Andhra Pradesh, India. International Journal of Environment and Climate Change, 13(9), 912–924.
10.9734/ijecc/2023/v13i103115
Gudla, S. L., Devarakonda, N., Ray, S., & Varikuppala, M. (2023). Evaluating the primary macronutrients and their correlations with pH, electrical conductivity, organic carbon and soil nutrient index in the arid and semi-arid climatic zones of Anantapur District, Andhra Pradesh, India. International Journal of Plant & Soil Science, 35(5), 50–62.
10.9734/ijpss/2023/v35i203832
Gudla, S., Narendra Swaroop, Tarence Thomas and Akshita Barthwal (2021). Assessment of physico-chemical properties of black cotton soils from different blocks of Guntur District, Andhra Pradesh, India. The Pharma Innovation, 10(8), 665-670.
Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature reviews. Microbiology, 18(1), 35–46. https://doi.org/10.1038/s41579-019-0265-7
Jiao, S., & Lu, Y. (2020). Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environmental microbiology, 22(3), 1052–1065. https://doi.org/10.1111/1462-2920.14815
Jones, D.L., Nguyen, C. & Finlay, R.D.(2006) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33. https://doi.org/10.1007/s11104-009-9925-0
Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H., & Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment, 141(1-2), 184-192 (2019). https://doi.org/10.1016/j.agee.2011.02.029
Kemmitt, S. J., Wright, D., Goulding, K. W. T., & Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5), 898-911 (2006). https://doi.org/10.1016/j.soilbio.2005.08.006
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R. and Nico, P.S. (2015) Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy, 130, 1-140.
https://doi.org/10.1016/bs.agron.2014.10.005
Lal R. (2003). Soil erosion and the global carbon budget. Environment international, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7
Lal R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1623–1627.
https://doi.org/10.1126/science.1097396
Lal, R. (2015). Sequestering carbon and increasing productivity by conservation agriculture. Journal of Soil and Water Conservation, 70(3), 55A-62A.
https://doi.org/10.2489/jswc.70.3.55A
Lal, R. (2020). Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Science and Plant Nutrition, 66(1), 1-9. https://doi.org/10.1080/00380768.2020.1718548
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68. https://doi.org/10.1038/nature16069
Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 1-6. https://doi.org/10.1038/nmicrobiol.2017.105
Machmuller, M. B., Kramer, M. G., Cyle, T. K., Hill, N., Hancock, D., & Thompson, A. (2015). Emerging land use practices rapidly increase soil organic matter. Nature Communications, 6(1), 1-5. https://doi.org/10.1038/ncomms7995
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z. S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., ... Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86. https://doi.org/10.1016/j.geoderma.2017.01.002
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed.), 372, n71. https://doi.org/10.1136/bmj.n71
Pan, Z., Cai, X., Bo, Y., Guan, C., Cai, L., Haider, F. U., Li, X., & Yu, H. (2024). Response of soil organic carbon and soil aggregate stability to changes in land use patterns on the Loess Plateau. Scientific reports, 14(1), 31775. https://doi.org/10.1038/s41598-024-82300-2
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57. https://doi.org/10.1038/nature17174
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., ... & Nieder, R. (2017). Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biology and Biochemistry, 125, 10-26. https://doi.org/10.1016/j.soilbio.2018.06.025
Ray, S., Adhikary, R., Masina, S., Divya, S., & Sameer, S. (2025). Carbon sequestration and its effect on soil quality and crop productivity. Tropical Agriculture, 102(3), 424–440. https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/9064.
Rillig, M. C., Aguilar-Trigueros, C. A., Camenzind, T., Cavagnaro, T. R., Degrune, F., Hohmann, P., & Yang, G. (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytologist, 222(3), 1171-1175 https://doi.org/10.1111/nph.15602
Sa, J. C. D., Lal, R., Cerri, C. C., Lorenz, K., Hungria, M., & Carvalho, P. C. D. F. (2017). Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment International, 98, 102-112.
https://doi.org/10.1016/j.envint.2016.10.020
Schimel, J. P., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 88(6), 1386-1394. https://doi.org/10.1890/06-0219
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., ... & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature10386
Schulte, L. A., Niemi, J., Helmers, M. J., Liebman, M., Arbuckle, J. G., James, D. E., ... & Witte, C. (2021). Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proceedings of the National Academy of Sciences, 114(42), 11247-11252. https://doi.org/10.1073/pnas.1620229114
Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176. https://doi.org/10.1023/A:1016125726789
Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., & Zaehle, S. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219-241. https://doi.org/10.1111/gcb.14815
Sollins, P., Homann, P., & Caldwell, B. A. (1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74(1-2), 65-105.
https://doi.org/10.1016/S0016-7061(96)00036-5
van der Heijden, M. G., Martin, F. M., Selosse, M. A., & Sanders, I. R. (2015). Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 205(4), 1406-1423. https://doi.org/10.1111/nph.13288
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – A review. European Journal of Soil Science, 57(4), 426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
Wang, K., Peng, C., Zhu, Q., Zhou, X., Wang, M., Zhang, K., & Wang, G. (2017). Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX‐GHG. Journal of Advances in Modeling Earth Systems, 9(6), 2368–2384. https://doi.org/10.1002/2017ms000920
Wang, Y., Zhu, G., Song, L., Wang, S., & Li, X. (2018). Soil microbial community responses to land use and soil properties in a karst region. Geoderma, 315, 65-72. https://doi.org/10.1016/j.geoderma.2017.11.037
West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 66(6), 1930-1946. https://doi.org/10.2136/sssaj2002.1930
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sri Likhitha Gudla, Isiaka Adebayo Azeez, Gabriel Oluwaseun Oyebode

This work is licensed under a Creative Commons Attribution 4.0 International License.