Tracing the Impact of Blockchain in Agriculture: A Bibliometric Perspective

Authors

  • Sutej Raghavendra Kulkarni Department of Agricultural Extension Education, M. S. Swaminathan School of Agriculture, Centurion University of Technology & Management, Odisha – 761211, India https://orcid.org/0009-0004-1743-7038
  • Samik Kumar Pradhan Department of Agricultural Extension Education, M. S. Swaminathan School of Agriculture, Centurion University of Technology & Management, Odisha – 761211, India https://orcid.org/0009-0001-6846-5627
  • Sai Kumar Periginji Department of Agricultural Extension Education, M. S. Swaminathan School of Agriculture, Centurion University of Technology & Management, Odisha – 761211, India https://orcid.org/0009-0008-0761-0334
  • Basabendra Sinha Mahapatra Department of Agricultural Extension Education, M. S. Swaminathan School of Agriculture, Centurion University of Technology & Management, Odisha – 761211, India
  • Chikene Harshitha Department of Agricultural Extension Education, M. S. Swaminathan School of Agriculture, Centurion University of Technology & Management, Odisha – 761211, India https://orcid.org/0009-0003-9346-9309

DOI:

https://doi.org/10.5281/zenodo.17295430

Keywords:

Blockchain technology, Agriculture food traceability, Supply chain management, Artificial intelligence, Sustainability, Bibliometric analysis

Abstract

Blockchain technology (BCT) is increasingly applied in agriculture to improve transparency, efficiency, and trust in agri-food systems. This study presents a bibliometric analysis of blockchain research in agriculture using the Scopus database, covering 373 peer-reviewed journal articles published between 2019 and 2024. The analysis examines publication trends, leading institutions, funding sponsors, and international collaborations, supported by VOS viewer visualizations. Results reveal consistent growth in scholarly output, peaking in 2023, with India and China emerging as global leaders. Key contributions highlight blockchain’s role in food traceability, supply chain management, financial inclusion, and sustainability tracking. Co-authorship patterns indicate India’s pivotal role in fostering collaborations with the United States, United Kingdom, and emerging partners in Asia and the Middle East. Despite challenges of scalability, regulation, and energy costs, integration with technologies such as IoT, AI, and DeFi presents opportunities for innovation. Findings underscore blockchain’s potential to advance sustainable agricultural development worldwide.

References

Altarturi, H., Nor, A. M., Jaafar, N. I., & Anuar, N. B. (2023). A bibliometric and content analysis of technological advancement applications in agricultural e-commerce. Electronic Commerce Research. Advance online publication. https://doi.org/10.1007/s10660-023-09670-z

Chang, S. E., & Chen, Y. (2020). When blockchain meets supply chain: A systematic literature review on current development and potential applications. IEEE Access, 8, 62478–62494. https://doi.org/10.1109/ACCESS.2020.2983601

Dutta, P., Choi, T.-M., Somani, S., & Butala, R. (2020). Blockchain technology in supply chain operations: Applications, challenges, and research opportunities. Transportation Research Part E: Logistics and Transportation Review, 142, 102067. https://doi.org/10.1016/j.tre.2020.102067

Elias, S. K., Usman, S. B., & Chuprat, S. (2024). Discovering the global landscape of agri-food and blockchain: A bibliometric review. International Journal of Advanced Computer Science and Applications, 15(4). https://doi.org/10.14569/IJACSA.2024.0150458

Ellahi, R. M., Wood, L. C., & Bekhit, A. E. (2023). Blockchain-based frameworks for food traceability: A systematic review. Foods, 12(16), 3026. https://doi.org/10.3390/foods12163026

Katsikouli, P., Wilde, A. S., Dragoni, N., & Høgh-Jensen, H. (2021). On the benefits and challenges of blockchains for managing food supply chains. Journal of the Science of Food and Agriculture, 101(7), 2175–2181. https://doi.org/10.1002/jsfa.10883

Khan, P. W., Byun, Y.-C., & Park, N. (2020). IoT-blockchain enabled optimized provenance system for Food Industry 4.0 using Hyperledger Sawtooth. IEEE Access, 8, 214608–214622. https://doi.org/10.1109/ACCESS.2020.2992201

Lei, Y., Kuai, Y., Guo, M., Zhang, H., Yuan, Y., & Hong, H. (2025). Phosphate-solubilizing microorganisms for soil health and ecosystem sustainability: A forty-year scientometric analysis (1984–2024). Frontiers in Microbiology, 16, 1546852. https://doi.org/10.3389/fmicb.2025.1546852

Liu, W., et al. (2021). A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. Journal of Cleaner Production, 288, 125676. https://doi.org/10.1016/j.jclepro.2021.125676

Mirabelli, G., & Solina, V. (2020). Blockchain and agricultural supply chains traceability: Research trends and future challenges. Procedia Manufacturing, 42, 414–421. https://doi.org/10.1016/j.promfg.2020.02.054

Mohapatra, S. S., Sainath, B., K. C., A., Lal, H., K., N. R., Bhandari, G., Nyika, J. M., & Sendhil, R. (2023). Application of blockchain technology in the agri-food system: A systematic bibliometric visualization analysis and policy imperatives. Journal of Agribusiness in Developing and Emerging Economies, 15(2), 288–310. https://doi.org/10.1108/JADEE-10-2022-0237

Munir, M. A., Anwar, S., Li, Y., & Dhir, A. (2022). Blockchain adoption for sustainable supply chain management: Economic, environmental, and social perspectives. Frontiers in Energy Research, 10, 899632. https://doi.org/10.3389/fenrg.2022.899632

Niknejad, N., Ismail, W. B., Bahari, M., Hendradi, R., & Salleh, A. Z. (2021). Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environmental Technology & Innovation, 21, 101272. https://doi.org/10.1016/j.eti.2020.101272

Panwar, A., Dutta, R., & Saha, S. (2023). Blockchain in agriculture to ensure trust, effectiveness, and transparency: A review. Future Internet, 15(12), 404. https://doi.org/10.3390/fi15120404

Pradhan, S. K., Prusty, A. K., Priyadarshi, D., Badavath, A., Nayak, S., Munda, S. C., & Sudham, V. (2024). Impact of disruptive technologies on transforming Indian agriculture. International Journal of Agriculture Extension and Social Development, 7(5), 34–41. https://doi.org/10.33545/26180723.2024.v7.i5a.597

Prusty, A. K., Saha, P., Das, N., & Suman, S. (2025). Implementation and adoption of smart technologies in agri-allied sectors. Plant Science Today, 11(Suppl. 2), Article 3467. https://doi.org/10.14719/pst.3467

Salah, K., Nizamuddin, N., Jayaraman, R., & Omar, M. (2019). Blockchain-based soybean traceability in the agricultural supply chain. IEEE Access, 7, 73295–73305. https://doi.org/10.1109/ACCESS.2019.2918000

Shakor, M. Y., Khaleel, M. I., Safran, M. S., Alfarhood, S., & Zhu, M. (2024). Dynamic AES encryption and blockchain key management: A novel solution for cloud data security. IEEE Access, 12, 26334–26343. https://doi.org/10.1109/ACCESS.2024.3351119

Sugandh, U., Nigam, S., Misra, S., & Khari, M. (2023). A bibliometric analysis of the evolution of state-of-the-art blockchain technology (BCT) in the agrifood sector from 2014 to 2022. Sensors, 23(14), 6278. https://doi.org/10.3390/s23146278

Suman, S., Deb, A., Prusty, A. K., Sameer, S., Divya, B. S., & Saha, S. (2024). Utilizing blockchain, IoT and machine learning for transparent agri-extension and resource distribution: A review. In 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded Systems (SCOPES) (pp. 1–6). IEEE. https://doi.org/10.1109/SCOPES64467.2024.10991113

Suman, S., Prusty, A. K., Deb, A., & Kumari, A. (2025). Global research trends in family farming: A bibliometric insight. Indian Journal of Extension Education, 61(1), 25–31. https://doi.org/10.48165/IJEE.2025.61105

Taherdoost, H. (2022). Blockchain technology and artificial intelligence together: A critical review on applications. Applied Sciences, 12(24), 12948. https://doi.org/10.3390/app122412948

Tripoli, M., & Schmidhuber, J. (2018). Emerging opportunities for the application of blockchain in the agri-food industry. FAO & ICTSD. https://doi.org/10.22004/ag.econ.320187

Vangala, A., Das, A. K., Kumar, N., & Alazab, M. (2021a). Smart secure sensing for IoT-based agriculture: A blockchain perspective. IEEE Sensors Journal, 21(16), 17591–17607. https://doi.org/10.1109/JSEN.2020.3012294

Vangala, A., Sutrala, A. K., Das, A. K., & Jo, M. (2021b). Smart contract-based blockchain-envisioned authentication scheme for smart farming. IEEE Internet of Things Journal, 8(13), 10792–10806. https://doi.org/10.1109/JIOT.2021.3050676

Xu, J., et al. (2020). Blockchain: A new safeguard for agri-foods. Artificial Intelligence in Agriculture, 4, 153–161. https://doi.org/10.1016/j.aiia.2020.06.001

Yadav, V. S., & Singh, A. R. (2019). A systematic literature review of blockchain technology in agriculture. In Proceedings of the IEOM 2019 Conference (Pilsen).

Yu, Q., Zhang, X., Sun, R., et al. (2024). Blockchain-based fresh-food quality traceability and dynamic monitoring: A review. Computers and Electronics in Agriculture, 224, 109277. https://doi.org/10.1016/j.compag.2024.109277

Downloads

Published

2025-04-30

How to Cite

Kulkarni, S. R., Pradhan, S. K., Periginji, S. K., Mahapatra, B. S., & Harshitha, C. (2025). Tracing the Impact of Blockchain in Agriculture: A Bibliometric Perspective. Next Gen Multidisciplinary Research, 1(1), 23-30. https://doi.org/10.5281/zenodo.17295430