Oxidized Low-Density Lipoprotein as an Emerging Biomarker in Atherosclerosis: Synthesis and Clinical Implications in Cardiovascular and Metabolic Diseases

Authors

  • Hivre Manjusha Department of Biochemistry, MGM Medical College, Chh. Sambhajinagar 431003, Maharashtra, India
  • Shrirang Holkar Department of Biochemistry, MGM Medical College, Chh. Sambhajinagar 431003, Maharashtra, India
  • Deepali Vaishnav Department of Biochemistry, MGM Medical College, Chh. Sambhajinagar 431003, Maharashtra, India

DOI:

https://doi.org/10.5281/zenodo.18375365

Keywords:

Atherosclerosis, Biomarker, Cardiovascular Risk, Inflammation, Lipid Peroxidation, Metabolic Disorders, Oxidized LDL, Plaque Instability

Abstract

Oxidative modification of low-density lipoprotein is a key process in the onset and development of atherosclerosis and associated cardiometabolic diseases. Unlike LDL cholesterol, oxidized low-density lipoprotein (OxLDL) is a biologically active mediator that induces endothelial dysfunction, foam cell formation, chronic vascular inflammation, plaque progression and plaque destabilization. This review synthesizes the current knowledge on the molecular biology of oxLDL, the molecular pathways controlling formation of oxLDL, and multiple pathogenic effects of oxLDL on the vascular wall. We critically analyse current methods for the measurement of oxLDL, emphasizing their analytical strengths, limitations and problems associated with assay standardization. The clinical significance of oxLDL is reviewed in relation to major disease conditions, such as coronary artery disease, acute coronary syndromes, diabetes mellitus, metabolic syndrome, chronic kidney disease, hypertension, non-alcoholic fatty liver disease, stroke and peripheral arterial disease. Accumulating evidence shows that oxLDL is a source of prognostic information in addition to conventional lipid parameters and improves the cardiovascular risk stratification. Although there are still limits on routine clinical implementation, further improvements in assay technology and increasing mechanistic insight make oxLDL a promising next-generation biomarker for personalised cardiovascular prevention and therapeutic monitoring.

References

Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., … Virani, S. S. (2019). Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation, 139(10), e56–e528. https://doi.org/10.1161/CIR.0000000000000659

Berliner, J. A., & Heinecke, J. W. (1996). The role of oxidized lipoproteins in atherogenesis. Free Radical Biology and Medicine, 20(5), 707–727. https://doi.org/10.1016/0891-5849(95)02173-6

Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., … Watson, A. D. (1995). Atherosclerosis: Basic mechanisms, oxidation, inflammation, and genetics. Circulation, 91(9), 2488–2496. https://doi.org/10.1161/01.CIR.91.9.2488

Brown, M. S., & Goldstein, J. L. (1983). Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annual Review of Biochemistry, 52, 223–261. https://doi.org/10.1146/annurev.bi.52.070183.001255

Chen, M., Masaki, T., & Sawamura, T. (2002). LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: Implications in endothelial dysfunction and atherosclerosis. Pharmacological Therapy, 95(1), 89–100. https://doi.org/10.1016/S0163-7258(02)00236-9

Cominacini, L., Rigoni, A., Pasini, A. F., Garbin, U., Davoli, A., Campagnola, M., … Sawamura, T. (2001). The binding of oxidized LDL to LOX-1 receptor reduces nitric oxide availability in endothelial cells. Journal of Biological Chemistry, 276(17), 13750–13755. https://doi.org/10.1074/jbc.M010612200

Esterbauer, H., Gebicki, J., Puhl, H., & Jürgens, G. (1992). The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine, 13(4), 341–390. https://doi.org/10.1016/0891-5849(92)90181-F

Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., … Catapano, A. L. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease: Evidence from genetic, epidemiologic, and clinical studies. European Heart Journal, 38(32), 2459–2472. https://doi.org/10.1093/eurheartj/ehx144

Goldstein, J. L., & Brown, M. S. (2009). The LDL receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(4), 431–438. https://doi.org/10.1161/ATVBAHA.108.179564

Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86(5), 494–501. https://doi.org/10.1161/01.RES.86.5.494

Heinecke, J. W. (1997). Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Current Opinion in Lipidology, 8(5), 268–274. https://doi.org/10.1097/00041433-199710000-00003

Holvoet, P. (2004). Oxidized LDL and coronary heart disease. Acta Cardiologica, 59(5), 479–484. https://doi.org/10.2143/AC.59.5.2005180

Holvoet, P., Lee, D. H., Steffes, M., Gross, M., & Jacobs, D. R., Jr. (2008). Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA, 299(19), 2287–2293. https://doi.org/10.1001/jama.299.19.2287

Hundal, R. S., Salh, B. S., Schrader, J. W., Gómez-Muñoz, A., Duronio, V., & Steinbrecher, U. P. (2001). Oxidized low density lipoprotein inhibits macrophage apoptosis through activation of the PI3-kinase/PKB pathway. Journal of Lipid Research, 42(9), 1483–1491.

Ishigaki, Y., Oka, Y., & Katagiri, H. (2009). Circulating oxidized LDL: A biomarker and a pathogenic factor. Current Opinion in Lipidology, 20(5), 363–369. https://doi.org/10.1097/MOL.0b013e328330b9b3

Itabe, H., & Takano, T. (2000). Oxidized low density lipoprotein: The occurrence and metabolism in circulation and in foam cells. Journal of Atherosclerosis and Thrombosis, 7(3), 123–131. https://doi.org/10.5551/jat1994.7.123

Johnston, N., Jernberg, T., Lagerqvist, B., Siegbahn, A., & Wallentin, L. (2006). Improved identification of patients with coronary artery disease by the use of new lipid and lipoprotein biomarkers. American Journal of Cardiology, 97(5), 640–645. https://doi.org/10.1016/j.amjcard.2005.09.112

Kondo, T., Osugi, S., Shimokata, K., Honjo, H., Morita, Y., Yamashita, K., … Kato, T. (2009). Oxidized LDL predicts cardiovascular events in patients with type 2 diabetes mellitus. Diabetes Care, 32(4), 712–717. https://doi.org/10.2337/dc08-1811

Lamb, D. J., & Leake, D. S. (1994). Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein. FEBS Letters, 352(1), 15–18. https://doi.org/10.1016/0014-5793(94)00928-4

Liao, F., Andalibi, A., deBeer, F. C., Fogelman, A. M., & Lusis, A. J. (1993). Genetic control of inflammatory gene induction and NF-κB-like transcription factor activation in response to an atherogenic diet in mice. Journal of Clinical Investigation, 91(6), 2572–2579. https://doi.org/10.1172/JCI116502

Lyons, T. J., & Jenkins, A. J. (1997). Lipoprotein glycation and its metabolic consequences. Current Opinion in Lipidology, 8(3), 174–180. https://doi.org/10.1097/00041433-199706000-00007

Meisinger, C., Baumert, J., Khuseyinova, N., Löwel, H., & Koenig, W. (2005). Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men. Circulation, 112(5), 651–657. https://doi.org/10.1161/CIRCULATIONAHA.105.546317

Naruko, T., Ueda, M., Haze, K., van der Wal, A. C., van der Loos, C. M., Itoh, A., … Becker, A. E. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23), 2894–2900. https://doi.org/10.1161/01.CIR.0000043620.26845.66

Pawlak, K., Myśliwiec, M., & Pawlak, D. (2004). Oxidative stress, phospholipid metabolism and calcium homeostasis in red blood cells of haemodialysis patients. Nephron Clinical Practice, 97(4), c139–c146. https://doi.org/10.1159/000079387

Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., … CANTOS Trial Group. (2018). Antiinflammatory therapy with canakinumab for atherosclerotic disease. New England Journal of Medicine, 377(12), 1119–1131. https://doi.org/10.1056/NEJMoa1707914

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., … Murray, C. J. L. (2020). Global burden of cardiovascular diseases and risk factors, 1990–2019. Journal of the American College of Cardiology, 76(25), 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

Segrest, J. P., Jones, M. K., De Loof, H., & Dashti, N. (2001). Structure of apolipoprotein B-100 in low density lipoproteins. Journal of Lipid Research, 42(9), 1346–1367.

Shimada, K., Mokuno, H., Matsunaga, E., Miyazaki, T., Sumiyoshi, K., Miyauchi, K., & Daida, H. (2004). Circulating oxidized low-density lipoprotein is an independent predictor for cardiac events in patients with coronary artery disease. Atherosclerosis, 174(2), 343–347. https://doi.org/10.1016/j.atherosclerosis.2004.03.009

Skóra, J. P., Gmiński, J., & Sadakierska-Chudy, A. (2006). Oxidized forms of fibrinogen in plasma of patients with atherosclerotic peripheral artery disease. Clinica Chimica Acta, 367(1–2), 60–65. https://doi.org/10.1016/j.cca.2005.11.021

Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., & Witztum, J. L. (1989). Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine, 320(14), 915–924. https://doi.org/10.1056/NEJM198904063201407

Toshima, S., Hasegawa, A., Kurabayashi, M., Itabe, H., Takano, T., Sugano, J., … Nagai, R. (2000). Circulating oxidized low density lipoprotein levels: A biochemical risk marker for coronary heart disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(10), 2243–2247. https://doi.org/10.1161/01.ATV.20.10.2243

Tsimikas, S., & Miller, Y. I. (2011). Oxidative modification of lipoproteins: Mechanisms, role in inflammation and potential clinical applications in cardiovascular disease. Current Pharmaceutical Design, 17(1), 27–37. https://doi.org/10.2174/138161211795049804

Uchida, K. (2000). Role of reactive aldehyde in cardiovascular diseases. Free Radical Biology and Medicine, 28(12), 1685–1696. https://doi.org/10.1016/S0891-5849(00)00259-8

Uno, M., Harada, M., Takimoto, O., Kitazato, K. T., Suzue, A., Yoneda, K., … Nagahiro, S. (2005). Elevation of plasma oxidized LDL in acute stroke patients is associated with ischemic lesions and predictive of infarct enlargement. Neurological Research, 27(1), 94–102. https://doi.org/10.1179/016164105X18549

Witztum, J. L., & Steinberg, D. (1991). Role of oxidized low density lipoprotein in atherogenesis. Journal of Clinical Investigation, 88(6), 1785–1792. https://doi.org/10.1172/JCI115499

World Health Organization. (2023). Cardiovascular diseases (CVDs): Key facts. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Yesilova, Z., Yaman, H., Oktenli, C., Ozcan, A., Uygun, A., Cakir, E., … Dagalp, K. (2005). Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease. American Journal of Gastroenterology, 100(4), 850–855. https://doi.org/10.1111/j.1572-0241.2005.40979.x

Downloads

Published

2025-12-30

How to Cite

Manjusha, H., Holkar, S., & Vaishnav, D. (2025). Oxidized Low-Density Lipoprotein as an Emerging Biomarker in Atherosclerosis: Synthesis and Clinical Implications in Cardiovascular and Metabolic Diseases. Next Gen Multidisciplinary Research, 1(2), 7-16. https://doi.org/10.5281/zenodo.18375365