Genetic Diversity and Genomic Resources in Millets

Authors

  • DATTI PURUSHOTAMA RAO Research Associate (RA), Regional Agriculture Research Station (Sugarcane)-Anakapalle
  • H P Chaturvedi Department of Genetics and Plant Breeding, School of Agricultural Sciences, Nagaland University, Medziphema Campus-797 106, Nagaland

DOI:

https://doi.org/10.5281/zenodo.17799730

Keywords:

Millets, Genetic diversity, Genomics, Biofortification, Markerassisted breeding

Abstract

Millets, a diverse group of small seeded C₄ grasses, are vital for food and nutritional security in arid and semi-arid regions due to their resilience to drought, short growing cycles, and nutrient-rich grains. This review synthesizes advances in understanding the genetic diversity and genomic resources of major millets pearl, finger, foxtail, proso, barnyard, little, and kodo. Landraces and wild relatives remain critical reservoirs of alleles for stress tolerance and nutritional enhancement. Recent genomic breakthroughs, including the sequencing of foxtail, pearl, finger, proso, and barnyard millet genomes, have accelerated gene discovery and molecular breeding. Marker-assisted selection, QTL mapping, and genomic selection have enabled significant progress in developing biofortified and stress-resilient cultivars, such as iron- and zinc-rich pearl millet hybrids and blast-resistant finger millet lines. Integration of pangenomics, transcriptomics, and genome editing (CRISPR-Cas systems) offers transformative potential for trait improvement. However, limited research funding, complex polyploid genomes, and regulatory barriers still constrain genomic adoption. The paper highlights future prospects, including omics integration, AI driven breeding, and global mainstreaming of millets as climate-smart, nutrient-dense crops crucial for achieving Sustainable Development Goals related to zero hunger, nutrition, and sustainable agriculture.

References

Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Nepolean, T., Sankar, S. M., Rajaram, V., … Gupta, S. K. (2017). Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Frontiers in Plant Science, 8, 412. https://doi.org/10.3389/fpls.2017.00412

Babu, B. K., Senthil, N., Gomez, S. M., Biji, K. R., Rajendraprasad, N. S., Kumar, S. S., … Nageswara Rao, P. (2014). Assessment of genetic diversity among finger millet accessions using SSR markers. Plant Genetic Resources: Characterization and Utilization, 12(S1), S91–S97. https://doi.org/10.1017/S1479262114000195

Choudhary, S., Ghatak, A., Weckwerth, W., & Gupta, S. K. (2020). Pearl millet: A climate-resilient nutritionally rich grain crop for arid and semi-arid regions. Sustainability, 12(21), 8329. https://doi.org/10.3390/su12218329

Dwivedi, S. L., Upadhyaya, H. D., Senthilvel, S., Hash, C. T., Fukunaga, K., Diao, X., … Ortiz, R. (2012). Millets: Genetic and genomic resources. Plant Breeding Reviews, 35, 247–375. https://doi.org/10.1002/9781118100509.ch6

Govindaraj, M., Rai, K. N., Kanatti, A., Upadhyaya, H. D., Shivade, H., Rao, A. S., & Reddy, K. N. (2016). Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Science, 56(5), 2431–2442. https://doi.org/10.2135/cropsci2015.11.0712

Guo, L., Qiu, J., Ye, C., Jin, G., Mao, L., Zhang, H., … Chen, F. (2020). Echinochloa crus-galli genome reveals adaptation to weediness. Nature Communications, 11, 979. https://doi.org/10.1038/s41467-020-14694-8

Hash, C. T., & Witcombe, J. R. (2001). Pearl millet molecular marker research. In J. M. Ribaut & D. Poland (Eds.), Application of molecular markers in plant breeding (pp. 21–32). CIMMYT, Mexico.

Hash, C. T., Weltzien-Rattunde, E., & Cavan, G. P. (2006). Opportunities for marker-assisted selection (MAS) to improve the probability of success in breeding pearl millet. International Sorghum and Millets Newsletter, 47, 58–62.

Hittalmani, S., Mahesh, H. B., Shirke, M. D., Biradar, H., Uday, G., Aruna, Y. R., … Mohanrao, A. (2017). Genome and transcriptome sequence of finger millet (Eleusine coracana): A model for blast resistance and high nutritional value cereals. DNA Research, 24(1), 1–13. https://doi.org/10.1093/dnares/dsw035

Jaiswal, S., Antala, T. J., Mandavia, M. K., Chopra, M., Jasrotia, R. S., Tomar, R. S., … Rathore, A. (2020). Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum L.) and development of web-genomic resources. Scientific Reports, 10, 17659. https://doi.org/10.1038/s41598-020-74439-5

Jia, G., Huang, X., Zhi, H., Zhao, Y., Zhao, Q., Li, W., … Han, B. (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 45(8), 957–961. https://doi.org/10.1038/ng.2673

Serraj, R., Hash, C. T., Rizvi, S. M. H., Sharma, A., Yadav, R. S., & Bidinger, F. R. (2005). Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Production Science, 8(3), 334–337. https://doi.org/10.1626/pps.8.334

Upadhyaya, H. D., Gowda, C. L. L., Reddy, V. G., & Singh, S. (2010). Identification of diverse germplasm lines for agronomic traits in finger millet core collection for utilization in crop improvement. Field Crops Research, 118(1), 21–28. https://doi.org/10.1016/j.fcr.2010.04.005

Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., … Vigouroux, Y. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35(10), 969–976. https://doi.org/10.1038/nbt.3943

Yadav, O. P., Hash, C. T., Bidinger, F. R., & Howarth, C. J. (2004). Pearl millet breeding lines developed at ICRISAT and their potential use in marker-assisted breeding. International Sorghum and Millets Newsletter, 45, 7–10.

Yadav, R. S., Sehgal, D., & Vadez, V. (2011). Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. Journal of Experimental Botany, 62(2), 397–408. https://doi.org/10.1093/jxb/erq265

Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S., … Diao, X. (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 30(6), 549–554. https://doi.org/10.1038/nbt.2195

Zhang, J., Wang, M., Guo, Z., Guan, C., & Zhang, H. (2021). Pangenome construction provides insights into genome diversity and climate adaptation of pearl millet. Plant Biotechnology Journal, 19(12), 2463–2475. https://doi.org/10.1111/pbi.13669

Zou, C., Wang, P., Xu, Y., & Xu, S. (2019). Genome sequencing of proso millet (Panicum miliaceum) provides insights into its evolution and domestication. Plant Biotechnology Journal, 17(2), 394–406. https://doi.org/10.1111/pbi.12989

Downloads

Published

2025-12-02

How to Cite

DATTI PURUSHOTAMA RAO, & Chaturvedi, H. P. (2025). Genetic Diversity and Genomic Resources in Millets. NG Agriculture Insights, 1(4), 25-31. https://doi.org/10.5281/zenodo.17799730

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.